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The Space Radiation Problem
Space radiation is comprised of 
high-energy protons and heavy 
ions (HZE’s) and secondary 
protons, neutrons, and heavy 
ions produced in shielding

• Unique damage to biomolecules, 
cells, and tissues occurs from HZE 
ions that is qualitatively distinct 
from X-rays and gamma-rays on 
Earth
• No human data to estimate risk 
from heavy ions
• Animal models must be applied or 
developed to estimate cancer, and 
other risks
• Solar particle events (SPEs) can 
not be predicted with sufficient 
warning at this time
• Shielding has excessive costs 
and will not eliminate galactic 
cosmic rays (GCR)

Single HZE ions in cells
And DNA breaks

Single HZE ions in photo-emulsions
Leaving visible images

Cucinotta and Durante, Lancet Oncology (2006)
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Categories of Radiation Risk
Four categories of risk of concern to NASA: 

– Carcinogenesis (morbidity and 
mortality risk)

– Acute and Late Central Nervous 
System (CNS) risks

immediate or late functional changes 

– Chronic & Degenerative Tissue Risks

cataracts, heart-disease, etc.

– Acute Radiation Risks – sickness or 
death

Differences in biological damage of heavy 
nuclei in space with x-rays, limits Earth-
based data on health effects for space 
applications

– New biological knowledge on risks must 
be obtained

– Are their sensitivity issues between risks?

Lens changes in cataracts (E. Blakely)

First experiments for leukemia induction with GCR (R. Ullrich)
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Individual Radiation Sensitivity and Astronauts

• Small number of healthy 
individuals selected for a 
large number of mission 
related attributes

• Screening for high risks 
missions could significantly 
reduce costs or may be 
viable option based on 
acceptable levels of risks

• Possibility to monitor 
individuals over many 
years (entry in Corp, pre-
and post-mission, continue 
after retirement)

Durante and Cucinotta, Nature Rev Cancer (2008)
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Systems Models to Integrate Across Approaches

As new knowledge and technologies are 
developed systems biology approaches will be 
needed to improve understanding of data and 
integrate across radiation sensitivity measures 

Chromosomal Aberrations
Telomere Changes
γH2AX residual levels
cDNA arrays
Protein arrays
Micro-satellite mutations, etc.
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Correlation between Chromosomal Aberrations and Cancer

Total cancer incidence

The Nordic cohorts
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The Italian cohort
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International Space Station (ISS)  
Biodosimetry

Use multi-color FISH painting to count 
frequency of specific aberrations (PCC 
vs. Metaphase spreads)

Pre-flight blood draw exposed to low 
doses of gamma-rays to determine 
individual calibration curve

Post-flight blood draw used as 
comparison and for determination of   
mGy-Eq. dose

Weighted linear regression

Ypre = A + B Dose

Post-flight biological dose eq.

BDE = (Ypost-A)/B Complex Aberrations post ISS
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Individual vs Population Biodosimetry
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NASA Results

• 24 assessments to 
date
– Mir Station 4 Crew
– Shuttle 2 Crew
– ISS 19 Crew

• Total exchanges 
increased in all cases

• Translocations and 
complex aberrations 
increased in majority 
of cases
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DNA Repair Defects and Radiation Quality
-Iron Nuclei and Total Exchanges

HF19 Cells
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Telomere Length Changes

• Telomere length associated 
with aging, disease, and 
damage repair

• Mechanisms of loss
– Replication loss
– ROS with Mitochondria 

leading to replication stress
– Also considered, somatic 

mutation and radiation 
mutation (terminal deletion)

• Missing data
– ROS vs PD
– Mutation rates
– Additive vs Multiplicative 

Mechanisms?
• For astronauts telomere 

length over career (entry, 
pre- and post-flights) of 
interest Population Doublings
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Telomere Associated γH2AX foci
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Systems Biology and Radiation Effects
• Systems biology  “the Science that discovers the principles underlying 

the emergence of functional properties of living organisms from 
interactions between macromolecules” -Alberghina and Westerhoff
(Topics in Current Genetics, 2005)

• Radiation presents several classes of substrates that perturb 
biological systems
– Simple and complex DNA damages
– Intra- and extra-cellular oxidative damage

• Pathway modeling of interest for DSB repair, telomere 
regulation, etc related to cancer risk

• Useful concepts from systems biology of 
pathways
– Flux and Control coefficients 
– Robustness
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Control coefficients in
WNT/β-Catenin Pathway

Lee et al. PLOS biology, vol 1

Metabolic control coefficients characterize effects of 
Enzymatic steps on a “Flux” (Kacser and Burns):

Ck
F=(k/F)dF/dk; Σ Ck

F=1
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Multiple Mechanisms for γH2AX Activation

• There are multiple 
mechanisms of γH2AX 
involved in both early 
radiation responses and 
pre-neoplasia DDR
– Family of PIKKs and 

acting on DSBs
– Replication stress
– Chromosomal 

aberrations or interstitial 
deletions?

– Uncapped telomeres 
(signal many other DDR 
response proteins)

DNA-PKcs ATM ATR

Ku70/80
MRN

DSB
Replication

Stress

ATRIP

γH2AX

Members of the phosphoinositide 3 kinase-
related protein kinase (PIKK) family activate 

γH2AX in an overlapping manner. γH2AX is an 
important indicator of early and residual 

damage; however not all of the downstream 
controls have been elucidated. 
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Systems Equations for NHEJ

γH2AX Foci 
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γH2AX Foci- Time Course and Dose Response
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ATM Activation and Translocation by MRN

0.1 Gy Gamma-rays
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Dose-Rates and Repair Foci
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γH2AX Foci and System Responses
Properties of gH2AX response curves 
have been associated with important 
biological outcomes
– Radiation sensitivity
– Genomic instability

Signaling time and duration, measure 
γH2AX persistence for different 
radiation qualities/doses
Signal time total amount kinase 
activated

γH2AX signal duration measure of 
variance about the mean
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γH2AX response sensitivity (0.2 Gy)
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Summary

Space radiation is a major challenge to exploration:
– Risks are high limiting mission length or crew selection
– Large mission cost to protect against risks and uncertainties

NASA approach to solve these problems:
– Probabilistic risk assessment framework for Exploration
– Systems biology approaches to integrate biodosimetry/biomarker data as 

new methods become feasible and are integrated into Lunar and Mars 
programs


